Opinion-Based Filtering through Trust
نویسندگان
چکیده
Recommender systems help users to identify particular items that best match their tastes or preferences. When we apply the agent theory to this domain, a standard centralized recommender system becomes a distributed world of recommender agents. Therefore, due to the agent’s world, a new information filtering method appears: the opinion-based filtering method. Its main idea is to consider other agents as personal entities which you can rely on or not. Recommender agents can ask their reliable friends for an opinion about a particular item and filter large sets of items based on it. Reliability is expressed through a trust value with which each agent labels its neighbors. Thus, the opinion-based filtering method needs a model of trust in the collaborative world. The model proposed emphasizes proactiveness since the agent looks for other agents in a situation of lack of information instead of remaining passive or providing either a negative or empty answer to the user. Finally, our social model of trust exploits interactiveness while preserving privacy.
منابع مشابه
A Novel Trust Computation Method Based on User Ratings to Improve the Recommendation
Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملIntegrating Opinion Leader and User Preference for Recommendation
Collaborative filtering (CF) is one of the most well-known and commonly used technology for recommender systems. However, it suffers from inherent issues such as data sparsity. Many works have been done by used additional information such as user attributes, tags and social relationships to address these problems. We proposed an algorithm named OLrs (Opinion Leaders for Recommender System) base...
متن کاملA Survey on the Relationship between Trust and Interest Similarity in Online Social Networks
A remarkable growth in quantity and popularity of online social networks has been observed in recent years. There is a good number of online social networks exists which have over 100 million registered users. Many of these popular social networks offer automated recommendations to their users. This automated recommendations are normally generated using collaborative filtering systems based on ...
متن کاملTrusted Routing Based on Dynamic Trust Mechanism in Mobile Ad-Hoc Networks
Due to the distributed nature, mobile ad-hoc networks (MANETs) are vulnerable to various attacks, resulting in distrusted communications. To achieve trusted communications, it is important to build trusted routes in routing algorithms in a self-organizing and decentralized fashion. This paper proposes a trusted routing to locate and to preserve trusted routes in MANETs. Instead of using a hard ...
متن کامل